Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2795: 195-212, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38594540

RESUMO

The phytochrome-interacting factor 4 (PIF4) is a well-known transcription factor that plays a pivotal role in plant thermomorphogenesis, coordinating growth and development in response to temperature changes. As PIF4 functions by forming complexes with other proteins, determining its interacting partners is essential for understanding its diverse roles in plant thermal responses. The GST (glutathione-S-transferase) pull-down assay is a widely used biochemical technique that enables the investigation of protein-protein interactions in vitro. It is particularly useful for studying transient or weak interactions between proteins. In this chapter, we describe the GST pull-down approach to detect the interaction between PIF4 and a known or suspected interacting protein. We provide detailed step-by-step descriptions of the assay procedures, from the preparation of recombinant GST-PIF4 fusion protein to the binding and elution of interacting partners. Additionally, we provide guidelines for data interpretation, quantification, and statistical analysis to ensure robust and reliable results.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fitocromo/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Nat Commun ; 14(1): 1449, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949101

RESUMO

MicroRNAs (miRNAs) play diverse roles in plant development, but whether and how miRNAs participate in thermomorphogenesis remain ambiguous. Here we show that HYPONASTIC LEAVES 1 (HYL1)-a key component of miRNA biogenesis-acts downstream of the thermal regulator PHYTOCHROME INTERACTING FACTOR 4 in the temperature-dependent plasticity of hypocotyl growth in Arabidopsis. A hyl1-2 suppressor screen identified a dominant dicer-like1 allele that rescues hyl1-2's defects in miRNA biogenesis and thermoresponsive hypocotyl elongation. Genome-wide miRNA and transcriptome analysis revealed microRNA156 (miR156) and its target SQUAMOSA PROMOTER-BINDING-PROTEIN-LIKE 9 (SPL9) to be critical regulators of thermomorphogenesis. Surprisingly, perturbation of the miR156/SPL9 module disengages seedling responsiveness to warm temperatures by impeding auxin sensitivity. Moreover, miR156-dependent auxin sensitivity also operates in the shade avoidance response at lower temperatures. Thus, these results unveil the miR156/SPL9 module as a previously uncharacterized genetic circuit that enables plant growth plasticity in response to environmental temperature and light changes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , MicroRNAs , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácidos Indolacéticos , Folhas de Planta/metabolismo , MicroRNAs/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Ligação a RNA/metabolismo
3.
Plant Physiol ; 190(4): 2706-2721, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36063057

RESUMO

While moderately elevated ambient temperatures do not trigger stress responses in plants, they do substantially stimulate the growth of specific organs through a process known as thermomorphogenesis. The basic helix-loop-helix transcription factor PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) plays a central role in regulating thermomorphogenetic hypocotyl elongation in various plant species, including Arabidopsis (Arabidopsis thaliana). Although it is well known that PIF4 and its co-activator HEMERA (HMR) promote plant thermosensory growth by activating genes involved in the biosynthesis and signaling of the phytohormone auxin, the detailed molecular mechanism of such transcriptional activation is not clear. In this report, we investigated the role of the Mediator complex in the PIF4/HMR-mediated thermoresponsive gene expression. Through the characterization of various mutants of the Mediator complex, a tail subunit named MED14 was identified as an essential factor for thermomorphogenetic hypocotyl growth. MED14 was required for the thermal induction of PIF4 target genes but had a marginal effect on the levels of PIF4 and HMR. Further transcriptomic analyses confirmed that the expression of numerous PIF4/HMR-dependent, auxin-related genes required MED14 at warm temperatures. Moreover, PIF4 and HMR physically interacted with MED14 and both were indispensable for the association of MED14 with the promoters of these thermoresponsive genes. While PIF4 did not regulate MED14 levels, HMR was required for the transcript abundance of MED14. Taken together, these results unveil an important thermomorphogenetic mechanism, in which PIF4 and HMR recruit the Mediator complex to activate auxin-related growth-promoting genes when plants sense moderate increases in ambient temperature.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Fitocromo/genética , Fitocromo/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Arabidopsis/metabolismo , Hipocótilo , Ácidos Indolacéticos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Complexo Mediador/metabolismo , Fatores de Transcrição/metabolismo
4.
Nat Commun ; 12(1): 5614, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556672

RESUMO

Photoactivated phytochrome B (PHYB) binds to antagonistically acting PHYTOCHROME-INTERACTING transcription FACTORs (PIFs) to regulate hundreds of light responsive genes in Arabidopsis by promoting PIF degradation. However, whether PHYB directly controls the transactivation activity of PIFs remains ambiguous. Here we show that the prototypic PIF, PIF3, possesses a p53-like transcription activation domain (AD) consisting of a hydrophobic activator motif flanked by acidic residues. A PIF3mAD mutant, in which the activator motif is replaced with alanines, fails to activate PIF3 target genes in Arabidopsis, validating the functions of the PIF3 AD in vivo. Intriguingly, the N-terminal photosensory module of PHYB binds immediately adjacent to the PIF3 AD to repress PIF3's transactivation activity, demonstrating a novel PHYB signaling mechanism through direct interference of the transactivation activity of PIF3. Our findings indicate that PHYB, likely also PHYA, controls the stability and activity of PIFs via structurally separable dual signaling mechanisms.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fitocromo B/genética , Ativação Transcricional/genética , Proteína Supressora de Tumor p53/genética , Sequência de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sítios de Ligação/genética , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Modelos Genéticos , Fitocromo A/genética , Fitocromo A/metabolismo , Fitocromo B/metabolismo , Plantas Geneticamente Modificadas , Ligação Proteica/efeitos da radiação , Homologia de Sequência de Aminoácidos , Ativação Transcricional/efeitos da radiação , Proteína Supressora de Tumor p53/metabolismo
5.
Nat Commun ; 12(1): 2042, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824329

RESUMO

Daytime warm temperature elicits thermomorphogenesis in Arabidopsis by stabilizing the central thermoregulator PHYTOCHROME INTERACTING transcription FACTOR 4 (PIF4), whose degradation is otherwise promoted by the photoreceptor and thermosensor phytochrome B. PIF4 stabilization in the light requires a transcriptional activator, HEMERA (HMR), and is abrogated when HMR's transactivation activity is impaired in hmr-22. Here, we report the identification of a hmr-22 suppressor mutant, rcb-101, which surprisingly carries an A275V mutation in REGULATOR OF CHLOROPLAST BIOGENESIS (RCB). rcb-101/hmr-22 restores thermoresponsive PIF4 accumulation and reverts the defects of hmr-22 in chloroplast biogenesis and photomorphogenesis. Strikingly, similar to hmr, the null rcb-10 mutant impedes PIF4 accumulation and thereby loses the warm-temperature response. rcb-101 rescues hmr-22 in an allele-specific manner. Consistently, RCB interacts directly with HMR. Together, these results unveil RCB as a novel temperature signaling component that functions collaboratively with HMR to initiate thermomorphogenesis by selectively stabilizing PIF4 in the daytime.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Morfogênese , Temperatura , Tiorredoxinas/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Clorofila/metabolismo , Cloroplastos/metabolismo , Cloroplastos/efeitos da radiação , Genes Supressores , Luz , Modelos Biológicos , Morfogênese/efeitos da radiação , Fotoperíodo , Estabilidade Proteica/efeitos da radiação , Plântula/metabolismo , Plântula/efeitos da radiação , Tiorredoxinas/química , Tiorredoxinas/genética , Fatores de Transcrição/metabolismo
6.
Plant Sci ; 297: 110541, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32563452

RESUMO

Ambient temperature has profound impacts on almost every aspect of plant growth and development, including seed germination, stem and petiole elongation, leaf movement, stomata development, flowering, and pathogen defense. Although the signal transduction pathways underlying plant responses to extreme cold and heat temperatures have been well studied, our understanding, at the molecular level, of how plants adjust phenotypic plasticity in response to nonstressful ambient temperature is still rudimentary. This review summarizes studies related to PHYTOCHROME-INTERACTING FACTOR 4 (PIF4), the cardinal regulator of thermoresponsive growth in the model dicotyledonous plant Arabidopsis thaliana, emphasizing recent progress in the light-quality- and photoperiod-dependent regulation of PIF4-mediated thermomorphogenesis.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Fotorreceptores de Plantas/fisiologia , Temperatura , Sensação Térmica/fisiologia
7.
Nat Commun ; 11(1): 1966, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32312985

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

8.
Nat Commun ; 11(1): 1660, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32245953

RESUMO

Warm temperature is postulated to induce plant thermomorphogenesis through a signaling mechanism similar to shade, as both destabilize the active form of the photoreceptor and thermosensor phytochrome B (phyB). At the cellular level, shade antagonizes phyB signaling by triggering phyB disassembly from photobodies. Here we report temperature-dependent photobody localization of fluorescent protein-tagged phyB (phyB-FP) in the epidermal cells of Arabidopsis hypocotyl and cotyledon. Our results demonstrate that warm temperature elicits different photobody dynamics than those by shade. Increases in temperature from 12 °C to 27 °C incrementally reduce photobody number by stimulating phyB-FP disassembly from selective thermo-unstable photobodies. The thermostability of photobodies relies on phyB's photosensory module. Surprisingly, elevated temperatures inflict opposite effects on phyB's functions in the hypocotyl and cotyledon despite inducing similar photobody dynamics, indicative of tissue/organ-specific temperature signaling circuitry either downstream of photobody dynamics or independent of phyB. Our results thus provide direct cell biology evidence supporting an early temperature signaling mechanism via dynamic assembly/disassembly of individual photobodies possessing distinct thermostabilities.


Assuntos
Proteínas de Arabidopsis/metabolismo , Estruturas do Núcleo Celular/metabolismo , Células Fotorreceptoras/metabolismo , Fitocromo B/metabolismo , Temperatura , Arabidopsis/metabolismo , Cotilédone/citologia , Cotilédone/metabolismo , Regulação da Expressão Gênica de Plantas , Hipocótilo/citologia , Hipocótilo/metabolismo , Luz , Células Vegetais/metabolismo , Epiderme Vegetal/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo
9.
Nat Commun ; 10(1): 140, 2019 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-30635559

RESUMO

Ambient temperature sensing by phytochrome B (PHYB) in Arabidopsis is thought to operate mainly at night. Here we show that PHYB plays an equally critical role in temperature sensing during the daytime. In daytime thermosensing, PHYB signals primarily through the temperature-responsive transcriptional regulator PIF4, which requires the transcriptional activator HEMERA (HMR). HMR does not regulate PIF4 transcription, instead, it interacts directly with PIF4, to activate the thermoresponsive growth-relevant genes and promote warm-temperature-dependent PIF4 accumulation. A missense allele hmr-22, which carries a loss-of-function D516N mutation in HMR's transcriptional activation domain, fails to induce the thermoresponsive genes and PIF4 accumulation. Both defects of hmr-22 could be rescued by expressing a HMR22 mutant protein fused with the transcriptional activation domain of VP16, suggesting a causal relationship between HMR-mediated activation of PIF4 target-genes and PIF4 accumulation. Together, this study reveals a daytime PHYB-mediated thermosensing mechanism, in which HMR acts as a necessary activator for PIF4-dependent induction of temperature-responsive genes and PIF4 accumulation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fitocromo B/metabolismo , Sensação Térmica/fisiologia , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/genética , Mudança Climática , Criptocromos/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Fitocromo B/genética , Transdução de Sinais/genética , Temperatura , Sensação Térmica/genética , Fatores de Transcrição/genética , Ativação Transcricional/genética
10.
Nat Commun ; 8(1): 1905, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29199270

RESUMO

Plant phytochromes are thought to transduce light signals by mediating the degradation of phytochrome-interacting transcription factors (PIFs) through the N-terminal photosensory module, while the C-terminal module, including a histidine kinase-related domain (HKRD), does not participate in signaling. Here we show that the C-terminal module of Arabidopsis phytochrome B (PHYB) is sufficient to mediate the degradation of PIF3 specifically and to activate photosynthetic genes in the dark. The HKRD is a dimerization domain for PHYB homo and heterodimerization. A D1040V mutation, which disrupts the dimerization of HKRD and the interaction between C-terminal module and PIF3, abrogates PHYB nuclear accumulation, photobody biogenesis, and PIF3 degradation. By contrast, disrupting the interaction between PIF3 and PHYB's N-terminal module has little effect on PIF3 degradation. Together, this study demonstrates that the dimeric form of the C-terminal module plays important signaling roles by targeting PHYB to subnuclear photobodies and interacting with PIF3 to trigger its degradation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Transdução de Sinal Luminoso , Luz , Fotossíntese/genética , Fitocromo B/metabolismo , Arabidopsis , Proteínas de Arabidopsis/genética , Dimerização , Mutação , Fitocromo B/genética , Domínios Proteicos
11.
Plant Physiol ; 173(4): 1953-1966, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28232584

RESUMO

HEMERA (HMR) is a nuclear and plastidial dual-targeted protein. While it functions in the nucleus as a transcriptional coactivator in phytochrome signaling to regulate a distinct set of light-responsive, growth-relevant genes, in plastids it is known as pTAC12, which associates with the plastid-encoded RNA polymerase, and is essential for inducing the plastomic photosynthetic genes and initiating chloroplast biogenesis. However, the mechanism of targeting HMR to the nucleus and plastids is still poorly understood. Here, we show that HMR can be directly imported into chloroplasts through a transit peptide residing in the N-terminal 50 amino acids. Upon cleavage of the transit peptide and additional proteolytic processing, mature HMR, which begins from Lys-58, retains its biochemical properties in phytochrome signaling. Unexpectedly, expression of mature HMR failed to rescue not only the plastidial but also the nuclear defects of the hmr mutant. This is because the predicted nuclear localization signals of HMR are nonfunctional, and therefore mature HMR is unable to accumulate in either plastids or the nucleus. Surprisingly, fusing the transit peptide of the small subunit of Rubisco with mature HMR rescues both its plastidial and nuclear localization and functions. These results, combined with the observation that the nuclear form of HMR has the same reduced molecular mass as plastidial HMR, support a retrograde protein translocation mechanism in which HMR is targeted first to plastids, processed to the mature form, and then relocated to the nucleus.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Núcleo Celular/genética , Plastídeos/genética , Fatores de Transcrição/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas , Immunoblotting , Microscopia Confocal , Mutação , Fitocromo/genética , Plantas Geneticamente Modificadas , Plastídeos/metabolismo , Transporte Proteico/genética , Proteólise , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo
12.
Plant Cell ; 27(5): 1409-27, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25944101

RESUMO

Phytochromes (phys) are red and far-red photoreceptors that control plant development and growth by promoting the proteolysis of a family of antagonistically acting basic helix-loop-helix transcription factors, the PHYTOCHROME-INTERACTING FACTORs (PIFs). We have previously shown that the degradation of PIF1 and PIF3 requires HEMERA (HMR). However, the biochemical function of HMR and the mechanism by which it mediates PIF degradation remain unclear. Here, we provide genetic evidence that HMR acts upstream of PIFs in regulating hypocotyl growth. Surprisingly, genome-wide analysis of HMR- and PIF-dependent genes reveals that HMR is also required for the transactivation of a subset of PIF direct-target genes. We show that HMR interacts with all PIFs. The HMR-PIF interaction is mediated mainly by HMR's N-terminal half and PIFs' conserved active-phytochrome B binding motif. In addition, HMR possesses an acidic nine-amino-acid transcriptional activation domain (9aaTAD) and a loss-of-function mutation in this 9aaTAD impairs the expression of PIF target genes and the destruction of PIF1 and PIF3. Together, these in vivo results support a regulatory mechanism for PIFs in which HMR is a transcriptional coactivator binding directly to PIFs and the 9aaTAD of HMR couples the degradation of PIF1 and PIF3 with the transactivation of PIF target genes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Ativação Transcricional , Motivos de Aminoácidos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Hipocótilo/genética , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/metabolismo , Análise em Microsséries , Mutação , Fitocromo/genética , Fitocromo/metabolismo , Proteólise , Proteínas Recombinantes de Fusão , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido
13.
Nat Commun ; 5: 3027, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24390011

RESUMO

Plant genomes are extremely sensitive to, and can be developmentally reprogrammed by environmental light cues. Here using rolling-circle amplification of gene-specific circularizable oligonucleotides coupled with fluorescence in situ hybridization, we demonstrate that light triggers a rapid repositioning of the Arabidopsis light-inducible chlorophyll a/b-binding proteins (CAB) locus from the nuclear interior to the nuclear periphery during its transcriptional activation. CAB repositioning is mediated by the red/far-red photoreceptors phytochromes (PHYs) and is inhibited by repressors of PHY signalling, including COP1, DET1 and PIFs. CAB repositioning appears to be a separate regulatory step occurring before its full transcriptional activation. Moreover, the light-inducible loci RBCS, PC and GUN5 undergo similar repositioning behaviour during their transcriptional activation. Our study supports a light-dependent gene regulatory mechanism in which PHYs activate light-inducible loci by relocating them to the nuclear periphery; it also provides evidence for the biological importance of gene positioning in the plant kingdom.


Assuntos
Arabidopsis/genética , Proteínas de Ligação à Clorofila/genética , Regulação da Expressão Gênica de Plantas , Rearranjo Gênico/genética , Luz , Ativação Transcricional , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Liases/genética , Proteínas Nucleares/metabolismo , Fitocromo A/metabolismo , Fitocromo B/metabolismo , Plastocianina/genética , Ubiquitina-Proteína Ligases/metabolismo
14.
Mol Med Rep ; 8(3): 877-82, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23827951

RESUMO

Connective tissue growth factor (CTGF), also known as CCN2, is a key proinflammatory mediator. In the present study, the involvement of the CTGF signaling pathway in human knee osteoarthritis (OA) fibroblast-like synoviocytes (FLSs) was investigated. FLSs were isolated from human OA synovium and incubated with CTGF in the absence or presence of interleukin­1ß (IL­1ß). The expression of relevant genes and proteins was analyzed by qPCR, western blotting and enzyme-linked immunosorbent assay (ELISA). Matrix metalloproteinase (MMP) activity and nuclear factor (NF)-κB activation were also evaluated. CTGF stimulation resulted in the significant production of IL-6, IL-8, C-C motif ligand 2 (CCL2), CCL20, MMP-1 and MMP-3 in FLSs in the presence, but not in the absence, of IL-1ß. CTGF also enhanced the levels of phosphorylated extracellular signal-related kinase 1/2 (ERK1/2) and p38. In addition, CTGF at 25 ng/ml, in the presence of IL­1ß, significantly potentiated NF-κB activation. The results indicated that CTGF interacted with IL­1ß in FLSs to promote the inflammatory response in the synovium, leading to the initiation of the inflammatory cascade. These results support the proinflammatory role of CTGF in synovitis and joint destruction in OA.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/farmacologia , Inflamação , Interleucina-1beta/farmacologia , Membrana Sinovial/efeitos dos fármacos , Idoso , Células Cultivadas , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Quimiocina CCL20/genética , Quimiocina CCL20/metabolismo , Fator de Crescimento do Tecido Conjuntivo/uso terapêutico , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Masculino , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/genética , Metaloproteinase 3 da Matriz/metabolismo , Pessoa de Meia-Idade , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Osteoartrite do Joelho/tratamento farmacológico , Osteoartrite do Joelho/metabolismo , Osteoartrite do Joelho/patologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Membrana Sinovial/citologia , Membrana Sinovial/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
15.
Plant Signal Behav ; 7(8): 907-10, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22827946

RESUMO

Since its initial discovery as a high affinity Ca ( 2+) -binding protein in the sarcoplasmic reticulum and endoplasmic reticulum (ER), calreticulin (CRT) has been documented to be a multifunctional protein in both animal and plant cells. This protein is well recognized as a Ca ( 2+) -binding molecular chaperone that facilitates the folding of newly synthesized glycoproteins and regulates the Ca ( 2+) homeostasis in the ER lumen. However, functional relevance associated with its localization in other cellular compartments has also been reported. Recent studies suggest that both isoforms of plant CRTs (AtCRT1/2 and AtCRT3) are involved in regulating plant defense against biotrophic pathogens. Here we discuss the cellular functions of CRT and its connection to the emerging functions of AtCRTs in plant immunity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Calreticulina/metabolismo , Imunidade Vegetal , Sequência de Aminoácidos , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Calreticulina/química , Humanos , Dados de Sequência Molecular , Mutação/genética , Fenótipo , Plantas Geneticamente Modificadas , Transporte Proteico , Frações Subcelulares/metabolismo
16.
Plant Mol Biol ; 79(1-2): 89-99, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22371088

RESUMO

Calcium/calmodulin (Ca(2+)/CaM) has long been considered a crucial component in wound signaling pathway. However, very few Ca(2+)/CaM-binding proteins have been identified which regulate plant responses to herbivore attack/wounding stress. We have reported earlier that a family of Ca(2+)/CaM-binding transcription factors designated as AtSRs (also known as AtCAMTAs) can respond differentially to wounding stress. Further studies revealed that AtSR1/CAMTA3 is a negative regulator of plant defense, and Ca(2+)/CaM-binding to AtSR1 is indispensable for the suppression of salicylic acid (SA) accumulation and disease resistance. Here we report that Ca(2+)/CaM-binding is also critical for AtSR1-mediated herbivore-induced wound response. Interestingly, atsr1 mutant plants are more susceptible to herbivore attack than wild-type plants. Complementation of atsr1 mutant plants by overexpressing wild-type AtSR1 protein can effectively restore plant resistance to herbivore attack. However, when mutants of AtSR1 with impaired CaM-binding ability were overexpressed in atsr1 mutant plants, plant resistance to herbivore attack was not restored, suggesting a key role for Ca(2+)/CaM-binding in wound signaling. Furthermore, it was observed that elevated SA levels in atsr1 mutant plants have a negative impact on both basal and induced biosynthesis of jasmonates (JA). These results revealed that Ca(2+)/CaM-mediated signaling regulates plant response to herbivore attack/wounding by modulating the SA-JA crosstalk through AtSR1.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Arabidopsis/parasitologia , Sinalização do Cálcio , Calmodulina/metabolismo , Herbivoria/fisiologia , Fatores de Transcrição/metabolismo , Animais , Arabidopsis/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Ciclopentanos/farmacologia , Herbivoria/efeitos dos fármacos , Insetos/efeitos dos fármacos , Insetos/fisiologia , Larva/efeitos dos fármacos , Larva/fisiologia , Mutação/genética , Oxilipinas/farmacologia , Doenças das Plantas/parasitologia , Ligação Proteica/efeitos dos fármacos , Ácido Salicílico/farmacologia
17.
Plant Sci ; 185-186: 274-80, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22325890

RESUMO

GT factors are a family of plant-specific transcription factors with conserved trihelix DNA-binding domains that bind GT elements. By screening a cDNA expression library with (35)S-labeled recombinant calmodulin (CaM), we identified AtGT2L, a classic member of GT-2 subfamily, as a Ca(2+)-dependent CaM-binding protein. AtGT2L specifically targets the nucleus and possesses both transcriptional activation and DNA-binding abilities, implicating its function as a nuclear transcription factor. The CaM-binding domain (CaMBD) of AtGT2L is embedded in its C-terminal DNA-binding domain, but the in vitro DNA-binding ability of AtGT2L was not affected by its interaction with CaM. Site-directed mutagenesis experiments further revealed that Met(506) and Leu(507) in the CaMBD are critical for both CaM- and DNA-binding abilities of AtGT2L. Northern blot analysis showed that AtGT2L mRNA levels are higher in old rosette leaves, cauline leaves and flowers than in other organs. In addition, the expression of AtGT2L was responsive to cold, NaCl and abscisic acid treatments. Furthermore, both basal and chilling/NaCl-induced expressions of the cold- and salt-inducible marker genes RD29A and ERD10 were higher in plants overexpressing AtGT2L than those in wild-type plants. Thus, our data indicate that AtGT2L is a Ca(2+)/CaM-binding nuclear transcription factor involved in plant responses to cold and salt stresses.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cálcio/metabolismo , Calmodulina/metabolismo , Estresse Fisiológico/fisiologia , Ácido Abscísico/farmacologia , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Ligação a Calmodulina/genética , Proteínas de Ligação a Calmodulina/metabolismo , Temperatura Baixa , Regulação da Expressão Gênica de Plantas/fisiologia , Dados de Sequência Molecular , Plantas Geneticamente Modificadas , Salinidade , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Cloreto de Sódio/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional
18.
Plant J ; 69(3): 489-500, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21974727

RESUMO

Calreticulin (CRT) is an endoplasmic reticulum-resident calcium-binding molecular chaperone that is highly conserved in multi-cellular eukaryotes. Higher plants contain two distinct groups of CRTs: CRT1/CRT2 and CRT3 isoforms. Previous studies have shown that bacterial elongation factor Tu receptor (EFR), a pattern-recognition receptor that is responsible for pathogen-associated molecular pattern-triggered immunity, is a substrate for Arabidopsis CRT3, suggesting a role for CRT3 in regulating plant defense against pathogens. Here we report that Arabidopsis CRT2 is another regulator of plant innate immunity. Despite significantly increased salicylic acid levels and constitutive expression of the systemic acquired resistance-associated marker genes PR1, PR2 and PR5, transgenic plants over-expressing CRT2 displayed reduced resistance to virulent Pseudomonas syringae pv. tomato DC3000 (PstDC3000). A (45)Ca(2+) overlay assay and a domain-swapping experiment further demonstrated that the negatively charged C-terminal tail of CRT2 is responsible for its high calcium-binding capacity and function in regulating the endogenous salicylic acid level. In addition, over-expression of the His173 mutant of CRT2 greatly enhanced plant defense against PstDC3000, supporting the existence of a self-inhibition mechanism that can counteract the effects of salicylic acid-dependent immune responses. These results suggest that CRT2 functions through its N-terminal domain(s) as a self-modulator that can possibly prevent the salicylic acid-mediated runaway defense responses triggered by its C-terminal calcium-buffering activity in response to pathogen invasion.


Assuntos
Proteínas de Arabidopsis/imunologia , Arabidopsis/imunologia , Calreticulina/imunologia , Imunidade Vegetal , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cálcio/metabolismo , Calreticulina/genética , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Doenças das Plantas/imunologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/imunologia , Pseudomonas syringae/patogenicidade , Ácido Salicílico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...